Peir

Model: PR-T095A-One way

C E 🛞 🗐 🏵 🐼

43±0.5

 $-21.9^{+0.}_{-0}$

-18.1--17-

Max Opening Angle	110°
Static Storage Temperature	–40°C - 110°C
Dynamic Working Temperature	–5°C - 50°C
Body Material	PBT/ PA66
Shaft Material	Zinc Alloy
Oil	Silicone Oil

5-45 KGF.CM

Model: PR-T095B-One way

CE®® 🖗 🖓 🐼

-CO. 5

Max Opening Angle	Static Storage Temperature	Dynamic Working Temperature	Body Material	Shaft Material	Oil
110°	-40°C - 110°C	–5°C - 50°C	PBT	PA66/ Zinc Alloy	Silicone Oil

Model: PR-T095C-One way

			45±0.5		^{-∞15.6}
(€@⊚⊴	0) 	CO. 5	
Torque		2-C1	<u>/</u>	-5-	
5-45 KGF.CM					
Max Opening Angle	Static Storage Temperature	Dynamic Working Temperature	Body Material	Shaft Material	Oil
110°	-40°C - 110°C	–5°C - 50°C	PBT/ PA66	Zinc Alloy	Silicone Oil

Remarks:

Compared with T095C, T095F is different in working angle 0-180°; T095M is of shaft diameter 7.8±0.1mm.

Model: PR-T098D-One way

(€@ 🕑 🐼

Torque

10-65 KGF.CM

Max Opening Angle	Static Storage Temperature	Dynamic Working Temperature	Body Material	Shaft Material	Oil
110°	-40°C - 110°C	–5°C - 50°C	PBT/ PA66	Zinc Alloy	Silicone Oil

Remarks:

Compare with T098D, body diameter of T098A is 19.6mm. The end attachment of T098C is 5mm in height.

Model: PR-T098E-One way

Max Opening Angle	Static Storage Temperature	Dynamic Working Temperature	Body Material	Shaft Material	Oil
110°	–40°C - 110°C	–5°C - 50°C	PA66	Zinc Alloy	Silicone Oil

Model: PR-T025-Two way

Model: PR-T051A-Two way (For front load washer, etc)

(€@®⊙⊘

-	 52±0.6 80±0.5	
 		Ę
		L

Model: PR-T098H-One way

Torque

10-65 KGF.CM

Max Opening Angle	Static Storage Temperature	Dynamic Working Temperature	Body Material	Shaft Material	Oil
110°	–40°C - 110°C	–5°C - 50°C	POM	Zinc Alloy	Silicone Oil

PC POM Silicone Oil

Torque	2000-5000 GF.CM	
Static Storag	e Temperature	–40°C - 110°C
Dynamic Wo	–5°C - 50°C	
Body Materia	PA66 Gray	
Shaft Materia	al	PA66 Gray
Oil		Silicone Oil

Peir

Model: PR-T058A-One/Two way (For curtain, etc)

Torque	500-3000 GF.CM	
Static Storage	e Temperature	–40°C - 110°C
Dynamic Wo	–5 °C- 50°C	
Body Materia	PC	
Shaft Material		POM
Oil		Silicone Oil

Model: PR-T060A-One/Two way (For curtain, etc)

(())

Torque	80-300 GF.CM		
Static Storag	e Temperature	–40°C - 11	0°C
Dynamic Working Temperature		–5°C - 50	°C
Body Material		PC	
Shaft Material		POM	
Oil		Silicone (Dil

Model: PR-T069A-Two way (For refrigerator, etc)

Model:PR-T083A-One way

 -40.1 ± 0.5

-27.4+0.

starting position of the rotation axis

Stop position of the rotation axis

ing Temperature	Body Material	Shaft Material	Oil
- 50°C	PA66-GF	Zinc Alloy	Silicone Oil

ng Temperature	Body Material	Shaft Material	Oil
50°C	PA66-GF	Zinc Alloy	Silicone Oil

Model: PR-T086A-One way

C E 🛞 🛞 🏵 🐼

_	

Torque	10-40 KGF.CM	
Max Opening Angle		110°
Static Storage Temperature		–40°C - 110°C
Dynamic Working Temperature		–5°C - 50°C
Body Material		PBT
Shaft Material		Zinc Alloy
Oil		Silicone Oil

44±0.5-

Rotary Damper Temperature & Speed Characteristics

Model: PR-T097A-One way

C E 🛞 🗐 🕑 🐼

2-C1

2-C0.5

Torque 30-90 KGF.CM

Max Opening Angle	92°
Static Storage Temperature	–40°C - 110°C
Dynamic Working Temperature	–5°C - 50°C
Body Material	PA66
Shaft Material	Zinc Alloy
Oil	Silicone Oil

Temperature Characteristics

The torque of the rotary damper varies according to the temperature. The higher temperature for the lower torque; The lower temperature for the higher torque. When the temperature returns to normal, the damper characteristics will return to normal as well.

The torque of the rotary damper varies according to rpm. In general, if the rpm goes up, the torque increases; If the rpm goes down, the torque decreases. In addition, please note that the starting torque slightly differs from the rated

(The torque value indicated in the product data is measured at the rotation

Peir

Torque calculation method in different scenarios

1.Controlled slow closing down. (From 90°- 0°)

Showed on the right figure, the flat starts to close down from position of less than 90 to horizon position. $T = (W^*g)^*(L/2)^*(\cos a)$

Example: W=2KG, L=300mm T max=(2*9.8)*(0.3/2)=2.94 Nm T damper=0-3.0Nm

2.Damper and springs achieve soft opening. (0°~ 90°)

As the right picture shows, the flat open along the axis when the spring exerts force on it. The graph below shows the relation among spring Force T, gravity of flat W and the resistance of rotation of damper:

Example:
W=1 KG, L=200mm
T load=1*9.8*(0.2/2)=0.98Nm
Tspring=1.2~0.5Nm
Tdamper≤Fspring-Fload
=(1.2-0.98)Nm~(0.5-0)Nm
=0.22~0.5Nm

Note:

T: Torque.

L/2: 1/2 the length of the cover from the pivot to the end(Center of gravity). W: Actual weight of lid.

a: Max angle between the cover and horizontal position.

а

Ó°

Dongguan/Shanghai/Yangzhou, China

HongKong/Shenzhen,China

