Model: PR-T002C-Two way (For medical equipment, etc)

Model: PR-T035-Two way

 $-2.1^{+0.05}$ *

-(1.7)

CE®® 🕙 🔇 🚱

22.

60

-7.5-

-18.9 -22.5 ± 0.1 -24 ± 0.1

Model: PR-T036-Two way

(())

Torque	20-135 GF.CM				
Static Storage Temperature		Body Material	Shaft Material	Oil	
	–5°C–50°C		PC	POM	Silicone Oil

Model: PR-T033A-Two way

C E 🛞 🗐 🕑 🚱

Torque	Torque30-400 GF.CM	
Static Storag	-40°C-110°C	
Dynamic Wo	-5°C-50°C	
Body Materia	PC	
Shaft Materia	POM	
Gear Materia	L	POM
Oil		Silicone Oil

External Diameter	10.4
Dividing Dia	8.8
Gear No	11
Modulus	0.8
Pressure Angle	20°

-	

Torque	50-400 GF.CM	
	_	
Static Storag	-40°C-110°C	
Dynamic Wo	–5°C–50°C	
Body Materi	al	PC
Shaft Materi	al	POM
Oil		Silicone Oil

External Diameter	10.4
Dividing Dia	8.8
Gear No	11
Modulus	0.8
Pressure Angle	20°

Torque 3		
Static Storage Ten	nperature	–40°C–110°C
Dynamic Working	Temperature	–5°C–50°C
Body Material		PC
Shaft Material		POM
Gear Material		POM
Oil		Silicone Oil
External Diameter	10.4	
Dividing Dia	8.8	
Gear No		
Modulus	0.8	
Pressure Angle	20°	

Model: PR-PR-T089A-One/Two way (For kettle, etc)

C E 🛞 🗐 🕑 🐼

Torque

Body Material

Gear Material

Static Storage Temperature

80-1200 GF.CM

Silicone Oil

PC POM

POM

Pressure Angel

11 1.0

20°

Model: PR-T096A-Two way (For kettle, etc)

(())

Model: PR-T090A-Two way

CE®® 🛇 🐼

Torque 30-250 GF.CM

Static Storage Temperature Dynamic V			rking Tempe	rature	Body	Mate ria ll	Shaft Material	Oil
-40°C-110°	-40°C-110°C -5°C-5					РС	POM	Silicone Oil
External Diameter	Dividing Dia	Gear No	Modulus	Pressure A	Angle			
10.4	8.8	11	0.8	20°				

Model: PR-CD-Two way

Gear Material	Shaft Material	Case	Cover
POM	POM	PA66GF13	PA66

Oynamic Working Temperature	-5°C - 50°C
Body Material	POM
Gear Material	POM
Shaft Material	POM
Dil	Silicone Oil

Model: PR-CG-Two way

Gear Material	Shaft Material	Case	Cover	Sealing Ring	Oil
POM	POM	PC	PC	Silicone Rubber	Silicone Oil

Model: PR-CJ-Two way

Gear Material	Shaft Material	Case	Cover	Sealing Ring	Oil
POM	POM	PC	PC	Silicone Rubber	Silicone Oil

Model: PR-DA007-Two way (For automotive centre armrest, etc)

Rotary Damper Temperature & Speed Characteristics

Temperature Characteristics

The torque of the rotary damper varies according to the temperature. The higher temperature for the lower torque; The lower temperature for the higher torque. When the temperature returns to normal, the damper characteristics will return to normal as well.

The torque of the rotary damper varies according to rpm. In general, if the rpm goes up, the torque increases; If the rpm goes down, the torque decreases. In addition, please note that the starting torque slightly differs from the rated

(The torque value indicated in the product data is measured at the rotation

	- Gear removable
Rotor	
	O-ring
	Cover
	Body

Torque calculation method in different scenarios

1.Controlled slow closing down. (From 90°- 0°)

Showed on the right figure, the flat starts to close down from position of less than 90 to horizon position. $T = (W^*g)^*(L/2)^*(\cos a)$

Example: W=2KG, L=300mm T max=(2*9.8)*(0.3/2)=2.94 Nm T damper=0-3.0Nm

Example: W=1 KG, L=200mm T load = 1*9.8*(0.2/2) = 0.98Nm Tspring=1.2~0.5Nm Tdamper≤Fspring-Fload =(1.2-0.98)Nm $\sim(0.5-0)$ Nm =0.22~0.5Nm

Note: T: Torque. L/2: 1/2 the length of the cover from the pivot to the end(Center of gravity). W: Actual weight of lid. a: Max angle between the cover and horizontal position.

2.Damper and springs achieve soft opening. ($0^{\circ} \sim 90^{\circ}$)

As the right picture shows, the flat open along the axis when the spring exerts force on it. The graph below shows the relation among spring Force T, gravity of flat W and the resistance of rotation of damper:

Tdamper

а

'n٩

Dongguan/Shanghai/Yangzhou, China

HongKong/Shenzhen,China

