Keeping Damper

Inside have the damping locating pieces, which are attached to the rotor. When rotating the rotor, the damping locating piece will position the rotor at any angle. The thickness and number of the damping locating pieces will decide the rotor positioning torque. Thus, the torque will reduced or failed under high-speed continuous motion.

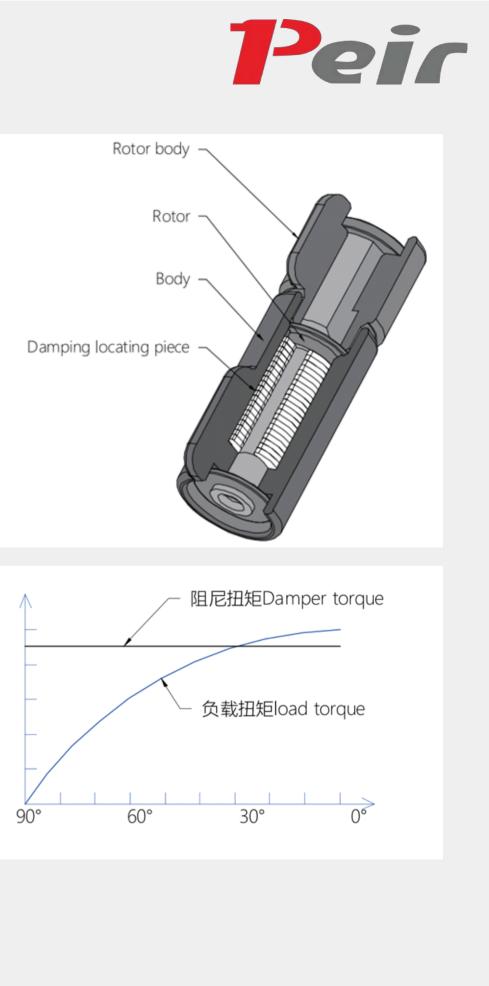
Damping direction: The keeping damper is typically bidirectional, but if needed, a one-way bearing can be added to make it unidirectional.

Damping characteristic: The starting torque will be 1-1.2 times the rated torque when rotating the damper initially.

Speed characteristic: The positioning torque will not change when the rotation speed changes. However if under a high-speed motion, positioning torque will be reduced as the internal temperature increases.

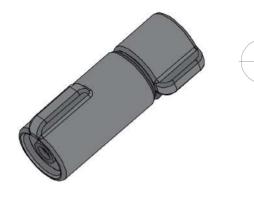
Note:

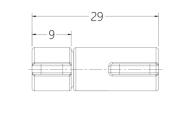
- 1. Suitable for the application of intermittent usage within 360° rotating.
- 2. The positioning torque will reduced if the keeping damper is in the water or oil.
- 3. The keeping damper will have a good position torque effect if the intermittent motion is within 5 cycles/min. (180° forward and backward is a cycle)



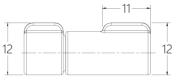
Laptop

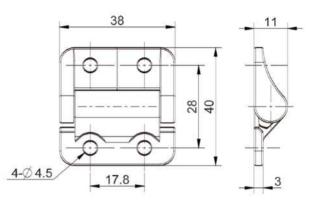
Tray Table





www.peirdamper.com


JP-TD10A-Two way (Φ10mm)


Ø10-

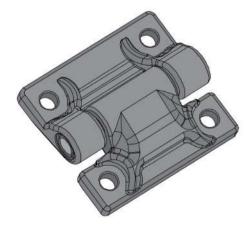
2.5

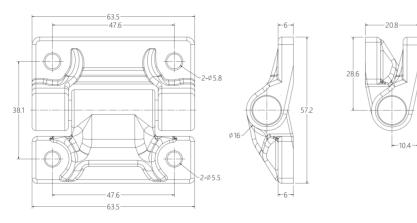
JP-B22-A(Φ11mm)

(€@ @ 🖓 🚱

Torque	9-23KGF.CM					
Maximum staticload parameters		Max Opening Angle	Static Storage Temprature	Dynamic Working Temperature	Body Material	Shaft Material
	125N	180°C	-20°C-80°C	–10°C-50°C	Zinc	Zinc

C E 🚳 💿 🏵 🐼

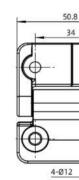

Working Angle	Static Storage Temprature	Dynamic Working Temperature	Body Material	Shaft Material	Oil
270°C	-20°C-80°C	-10°C-50°C	PBT	PA	Silicone Oil


-ø10 ⊊^{2.5}

JP-TD16H-Two way (**Φ**16mm)

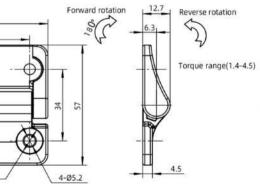
5 -10 KGF.CM

Torque


(€ ☺ 🏈 🐼

10 - 35 KGF.CM

Working Angle	Static Storage Temprature	Dynamic Working Temperature	Body Material	Shaft Material	Oil
270°C	-20°C-80°C	-10°C-50°C	PBT	PA	Silicone Oil


JP-B22-A(Ф12.7mm)

(€@⊚⇔

Torque	14-45KGF.CM					
Maximum staticload parameters		Max Opening Angle	Static Storage Temprature	Dynamic Working Temperature	Body Material	Shaft Material
	200N	180°C	-20°C-80°C	-10°C-50°C	Zinc	Zinc

